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The purpose of this paper is to recommend a framework andmethodology for incorporating hydrologic data and
ecohydrologic relationships in Ecological Site Descriptions (ESDs) and thereby enhance the utility of ESDs for
assessing rangelands and guiding resilience-based management strategies. Resilience-based strategies assess
and manage ecological state dynamics that affect state vulnerability and, therefore, provide opportunities to
adapt management. Many rangelands are spatially heterogeneous or sparsely vegetated where the vegetation
structure strongly influences infiltration and soil retention. Infiltration and soil retention further influence soil
water recharge, nutrient availability, and overall plant productivity. These key ecohydrologic relationships
govern the ecologic resilience of the various states and community phases on many rangeland ecological sites
(ESs) and are strongly affected by management practices, land use, and disturbances. However, ecohydrologic
data and relationships are often missing in ESDs and state-and-transition models (STMs). To address this void,
we used literature to determine the data required for inclusion of key ecohydrologic feedbacks into ESDs,
developed a framework and methodology for data integration within the current ESD structure, and applied the
framework to a select ES for demonstrative purposes. We also evaluated the utility of the Rangeland Hydrology
and Erosion Model (RHEM) for assessment and enhancement of ESDs based in part on hydrologic function. We
present the framework as a broadly applicable methodology for integrating ecohydrologic relationships and
feedbacks into ESDs and resilience-based management strategies. Our proposed framework increases the utility
of ESDs to assess rangelands, target conservation and restoration practices, and predict ecosystem responses to
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management. The integration of RHEM technology and our suggested framework on ecohydrologic relations
expands the ecological foundation of the overall ESD concept for rangeland management and is well aligned
with resilience-based, adaptive management of US rangelands. The proposed enhancement of ESDs will improve
communication between private land owners and resource managers and researchers across multiple disciplines
in the field of rangeland management.

Published by Elsevier Inc. on behalf of Society for Range Management.
Introduction

Ecological sites (ESs) are the primary means of evaluating ecosystem
health, developing land management objectives, selecting conservation
practices, and communicating ecosystem responses to management
for US rangelands (USDA, 2013). An ES is a conceptual division of the
landscape based on unique physical attributes (climate, soils, landscape
position, and topography) that govern the ability to produce charac-
teristic vegetation and to respond to management and disturbances.
Individual ecological sites for US rangelands are described through a
federal interagency program overseen by the Natural Resources
Conservation Service (NRCS) (NRCS, 2013a). The characteristics of each
ES are documented in an ecological site description (ESD) containing
defining biophysical features, community scale dynamics, and interpreta-
tions for land use and management (Table 1).

Plant community dynamics in response to management and distur-
bances are conceptualized within each ESD by a state-and-transition
model (STM) (USDA, 2013). An STM typically contains descriptions of
multiple discrete soil-vegetation stable states (ecological states), transi-
tions between the states, and identification of important ecological
processes and events that maintain states or drive state transitions
(Westoby et al., 1989; Briske et al., 2005, 2008; Bestelmeyer et al.,
2009; USDA, 2013; Fig. 1). STMsmay also include descriptions of 1)mul-
tiple within-state plant community phases and pathways; 2) at-risk
pretransition community phases; 3) thresholds and feedback mecha-
nisms that initiate or sustain state transitions; 4) ecological restoration
pathways from one state to another, and 5) indicators of ecological
resilience for each state. STMs identify one ecological state as the refer-
ence state that represents the ecological potential and natural/historical
range of variability for the respective ES (USDA, 2013). The reference
state generally exhibits vegetation composition/structure and ecological
processes that act to self-sustain (negative feedback mechanisms)
ecological resilience of the state and produce the largest array of potential
ecosystem services (Bestelmeyer et al., 2009). Ecological resilience refers
to the degree of alteration necessary to shift a system from one stable
state of reinforcing structure–function feedback mechanisms to a new
stable state sustained by different structure–function feedback mecha-
nisms (Peterson et al., 1998; Briske et al., 2008). STMs may also identify
alternative states that differ from the reference state in terms of one or
more ecological processes (e.g., hydrology, nutrient cycling, energy
capture and transformation) (USDA, 2013). Each ecological state contains
one ormore plant community phase(s) that collectively represent(s) the
within-state variability in biotic structure, ecological function, and
dynamic soil properties (USDA, 2013). An at-risk community phase
exhibits conditions near biotic and/or abiotic structural-functional
thresholds, beyond which shifts in processes (positive feedback mecha-
nisms) facilitate state transition. Structural thresholds are typically
identified (structural indicators) on the basis of changes in vegetation
(composition, growth form, and distribution) and bare ground connec-
tivity, whereas functional thresholds are identified (functional indica-
tors) by shifts in processes (e.g., wildfire, infiltration, runoff, soil
retention/erosion) that promote ecological function and resilience of
an alternative state (Briske et al., 2005, 2008). Transitions are drivers
or themechanismbywhich state shifts occur and are commonly initiated
by triggers (e.g., shifts in biotic or abiotic conditions, wildfire, drought,
and flood) occurring independently or jointly (Briske et al., 2006, 2008).
State transitions are generally regarded as irreversible without intensive
management or restoration action, whereas within-state shifts between
community phases represent reversible successional trajectories. Resto-
ration pathways are transition reversal trajectories bywhich active resto-
ration treatments re-establish and sustain prethreshold states through
reinforcing resilience (negative feedback) of a desired state and reducing
resilience (positive feedback) of an undesired state (Briske et al., 2006,
2008). Detailed STMs are an invaluable tool in assessment of current
conditions, prediction of site responses to conservation practices, and
assessment of the impact of management actions (Bestelmeyer et al.,
2004; Petersen et al., 2009; Evers et al., 2013).

The resilience of ecological states on rangelands is strongly influenced
by vegetation and hydrology interactions (Wilcox et al., 2003; Ludwig
et al., 2005; Turnbull et al., 2008, 2012; Petersen et al., 2009; Williams
et al., 2014a). Vegetation, litter, and ground cover on well-vegetated
rangelands delay and reduce runoff and erosion by trapping water
input, stabilizing sediment, promoting infiltration, and reducing the
erosive energy of rainfall and overland flow (Pierson et al., 1994, 2008a,
2009, 2010, 2013; Abrahams et al., 1994, 1995; Parsons et al., 1996;
Wainwright et al., 2000; Wilcox et al., 2003; Petersen and Stringham,
2008; Al-Hamdan et al., 2013; Williams et al., 2014a). Retention of soil
water and nutrients stimulates below-ground biological activity and
plant growth and reproduction that further sustain the vegetative
community structure and the stable hydrologic function (Schlesinger
et al., 1990, 1996; Wilcox et al., 2003; Belnap et al., 2005; Ludwig et al.,
2005; Puigdefábregas, 2005). Alteration of vegetation structure through
plant community shifts, fire, or other disturbances can increase the
susceptibility of the ground surface to runoff and sediment detachment
and transport (Fig. 2). Sparsely vegetated or bare soil locations promote
runoff and soil loss (Blackburn, 1975; Abrahams et al., 1994, 1995;
Parsons et al., 1996; Wilcox et al., 1996; Turnbull et al., 2008; Pierson
et al., 2010, 2011, 2013, 2014; Williams et al., 2014a,b) and exhibit high
evaporative losses and low soil water storage (Huxman et al., 2005;
Newman et al., 2010; Royer et al., 2012). Water and soil losses from
bare patches can further inhibit herbaceous productivity and propagate
bare ground connectivity (Bhark and Small, 2003). Runoff and soil loss
increase where susceptible bare conditions and erosion processes
become well-connected at the hillslope scale (Fig. 2; Wilcox et al.,
1996; Davenport et al., 1998; Pierson et al., 2008a; Turnbull et al., 2008;
Petersen et al., 2009; Pierson et al., 2009, 2010, 2013; Williams et al.,
2014a), potentially irreversibly degrading a site beyond a resource
conservation threshold (Schlesinger et al., 1990; Whitford et al., 1995;
Bestelmeyer et al., 2003; Chartier and Rostagno, 2006; Peters et al.,
2006, 2007; Turnbull et al., 2012; Williams et al., 2014a). Inclusion
of these ecohydrologic (vegetation and hydrology interactions) rela-
tionships in ESDs potentially improves the utility of ESDs for assessing
ecological state dynamics and predicting ecological responses to
management actions.

Clearly, hydrologic function is well recognized as an indicator of
ecosystem health and ecological state resilience on rangelands
(Wilcox et al., 2003; Ludwig et al., 2005; Turnbull et al., 2008; Petersen
et al., 2009; Williams et al., 2014a), but hydrologic information is
commonly missing in ESDs and STMs. The current recommended
framework for constructing ESDs (see Table 1) provides for inclusion



Table 1
Fundamental contents of an ecological site description (ESD) as prescribed in the Interagency ESDHandbook for Rangelands (USDA, 2013). See USDA (2013) for greater specificity on each
feature, key element, and utility

Feature Key elements Utility

Ecological site characteristics Site name; ID#; hierarchical classification General information on soil type, plant community, and
precipitation regime based on naming convention

Physiographic features Description of position on landscape, landform, geology, aspect,
slope, elevation, water table, flooding, ponding, runoff class

General topographic, geologic and hydrologic description, potential
for runoff generation

Climatic features Mean annual precipitation; monthly moisture/temperature
distribution; frost- and freeze-free periods; storm frequency/
intensity/duration characterization; frequency of catastrophic
storms; drought trends

Interpretation of production potential and general climatic regime

Influencing water features Description of water features (streams, springs, wetlands,
depressions, etc.) that influence vegetation or management of site

General hydrologic features of importance to vegetation management

Representative soil features Parent materials; surface/subsurface soil texture, surface/
subsurface fragments; drainage class; hydrologic conductivity;
depth; electrical conductivity; sodium adsorption ratio; calcium
carbonate equivalent; soil reaction (pH); and available water
capacity; soil and hydrologic rangeland health indicators that
characterize the reference community phase

Distinction, based on soil properties, from other ecological sites;
interpretation of key soil properties that affect ecohydrology

States and community phases Ecological site dynamics (describe successional stages and
disturbance dynamics); state-and-transition diagram (description of
states, community phases and pathways, transitions, restoration
pathways, and ecological mechanisms causing transitions and
precluding recovery of references and other states); photos (each
state and community phase); narrative (description of each
community phase and state, rational for phase and state separations,
causes or triggers of community pathways and state transitions,
thresholds between states, details on water cycle/nutrient cycle/
energy flow, hydrologic and erosion characteristics associated with
phases/states/transitions, and changes in key drivers of runoff/
erosion behavior); supporting community phase documentation
(citations to empirical data); community phase composition
(species list, constancy table, and description for phases); range of
annual production; total annual production by growth form; canopy
or foliar cover; structure (horizontal [canopy and basal gaps,
canopy/foliar cover] and vertical); ground surface cover;
community phase growth curves1

Description of ecological dynamics of the site

Ecological site interpretations1 Animal community; hydrology functions (changes in hydrologic
functions that may occur with shifts in community phases
within states); recreational uses; wood products; other products

Potential alteration of goods and services associated with ecosystem
dynamics

Supporting information Associated or similar ecological sites; inventory data references;
agency/state correlation; type locality; relationship to other
established systems1; other references; rangeland health
reference sheet (data on 17 rangeland health indicators for the
reference state condition)

Description of similar, related, and easily confused sites; data
comparisons; phase relationships to potential natural vegetation;
hydrologic function of reference state

Site description approval Authorship; site approval by appropriate authorized agency
representative; name of approving official

Reference for original author(s) and description development

1 Feature or element is recommended, but not required.
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of hydrologic data and key ecohydrologic relationships. However,
current guidance for ESD and STM development provides little to no
direction regardingwhat hydrologic or ecohydrologic information should
be included therein and provides limited information onhow to integrate
such information within the ESD concept (USDA, 2013). Inclusion of
hydrologic data in ESDs and STMs is also limited by data availability.
Although data on vegetation and soils are vast, quantitative hydrologic
data are unavailable for many rangeland ecological sites. Currently,
hydrologic function is indirectly represented in ESDs through a suite of
rangeland health attributes and indicators (e.g., percent bare ground,
surface soil stability, water flow patterns) for the reference state (see
Pellant et al., 2005). Although rangeland health attributes provide some
standards for comparison of the reference state to alternative states,
they provide a limited basis for evaluating and quantifying hydrologic
and erosional repercussions of disturbances and state transitions and
the benefits of conservation practices (e.g., Pierson et al., 2014).

Recent advances in ecohydrology, monitoring techniques, and
process-based hydrology models provide a foundation to enhance
utility of ESDs for rangeland management by providing more robust
and relevant ecohydrologic information. Ecohydrologic studies over the
past 2 decades have advanced understanding of the linkages among
vegetation structure, hydrologic and erosion processes, ecosystem
health, and identification of critical thresholds in ecological succession
(Davenport et al., 1998; Wainwright et al., 2000; Ludwig et al., 2005;
Peters et al., 2007; Turnbull et al., 2008, 2012; Petersen et al., 2009;
Pierson et al., 2010, 2013; Wilcox et al., 2012a; Williams et al., 2014a).
Knowledge has also increased regarding rangeland ecohydrologic and
erosion responses to disturbances and conservation practices (Pierson
et al., 2007, 2008a, 2009; Cline et al., 2010; Weltz and Spaeth, 2012;
Bestelmeyer et al., 2013; Pierson et al., 2013, 2014, 2015; Roundy
et al., 2014; Williams et al., 2014a,b, 2015). The increased availability
of integrated vegetation, hydrology, and erosion datasets from regional
and national field experiments has facilitated development of quantita-
tive tools for incorporating hydrology and erosion data into rangeland
ESDs and STMs (Wei et al., 2009; Nearing et al., 2011; Al-Hamdan
et al., 2012a,b, 2015; Hernandez et al., 2013; Weltz et al., 2014). For ex-
ample, the Rangeland Hydrology and ErosionModel (RHEM)was devel-
oped from diverse rangeland datasets for predicting runoff and erosion
responses on rangelands (Wei et al., 2009; Nearing et al., 2011;
Al-Hamdan et al., 2012a,b). The RHEM model provides a new tool
for integrating vegetation, soils, hydrology, and erosion predictions in
the development of ESDs and STMs (Weltz and Spaeth, 2012;
Hernandez et al., 2013; Weltz et al., 2014). RHEM was recently paired
with USDA-NRCS National Resources Inventory (NRI; NRCS, 2013b)
rangeland data to determine areas of vulnerability to accelerated soil
loss on non–federally owned rangelands across the western United



Figure 2. Common biotic structural (A) and hydrologic/erosion functional (process) shifts
(B) following woodland encroachment into Great Basin, USA, shrub-steppe, and the
conceptual increase in hydrologic vulnerability (runoff and erosion response) associated
with the respective changes in surface susceptibility (C). Surface susceptibility (C) is
dictated by the amount, type, and distribution of vegetation and ground cover (biotic
structure), inherent soil properties (e.g., bulk density, erodibility, texture, and water
repellency), surface roughness, and topography/slope steepness. Runoff and erosion from
a well-vegetated shrub-steppe state (A) occurs primarily by rainsplash and sheetflow
processes (B) and is typically low. Hydrologic vulnerability (C) increases exponentially
with site and ground surface degradation through the at-risk phase (A), particularly where
bare soil increases beyond 50–60% (structural threshold). High rates of erosion typically
occur where Great Basin shrub-steppe communities transition from the at-risk phase
to the woodland state (A). The exponential increase in soil loss (C) following the transition
results from a shift (functional threshold) to concentrated flow (B) as the dominant
runoff/erosion process in the woodland state. Concentrated flow has higher velocity than
sheetflow and thereby exhibits greater sediment detachment and transport capacity than
the combined effects of rainsplash and sheetflow. Overall hydrologic vulnerability for a
particular surface susceptibility is strongly influenced by storm magnitude (C). Long-term
hydrologic vulnerability is dictated by the spatial and temporal variability in surface suscep-
tibility and climate regime (e.g., monsoonal vs. continental storm regimes). In this context,
ecohydrologic resilience is considered the degree of alteration of biotic structure and the
associated hydrologic/erosion function required to shift the ecosystem from one state to
the other state, essentially from one side of graph C to the other side. Figure modified from
Williams et al. (2014a,b) and Miller et al. (2013). Rainsplash photograph (B) courtesy of
U.S. Department of Agriculture, Natural Resources Conservation Service.

Figure 1. Example state-and-transition model (STM) showing fundamental components
for the “South Slopes 12-16 PZ” Ecological Site (NRCS, 2014) located in Malheur High
Plateau Mountain Land Resource Area (MLRA 23, USDA, 2006). The site includes a
reference state with bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] Á. Löve ssp.
spicata), Idaho fescue (Festuca idahoensis Elmer), Sandberg bluegrass (Poa secunda J.
Presl), and Thurber’s needlegrass (Achnatherum thurberianum [Piper] Barkworth) under-
story and a mountain big sagebrush (Artemisia tridentata Nutt. subsp. vaseyana [Rydb.]
Beetle), basin big sagebrush (A. tridentata Nutt. subsp. tridentata), and antelope bitter-
brush (Purshia tridentata [Pursh] DC.) shrub component. The site also includes alternative
stable states associated with conifer encroachment by native western juniper (Juniperus
occidentalis Hook.) and invasion by the exotic annual cheatgrass (Bromus tectorum L.)
(NRCS, 2014). Individual ecological states are delineated by bold black rectangles, each
with one or more within-state plant community phases (shaded rectangles). State transi-
tions are indicated by solid black arrows.Within-state community pathways are indicated
by dotted black arrows. Restoration pathways are indicated by dashed black arrows. An
STM typically includes an accompanying tablewith text descriptions of the plant commu-
nity composition, community pathway/transition dynamics, and key structural and func-
tional indicators. See USDA (2013) and Briske et al. (2008) for detailed descriptions of
components of STMs.
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States (USDA, 2011; Weltz et al., 2014), as part of the multiagency
Conservation Effects Assessment Project (CEAP) (Spaeth et al., 2013).
RHEM was also recently paired with NRI data from more than 100
sites to evaluate the influence of vegetation, ground cover, soils, and
topography on soil erosion rates from rangelands in the southwestern
United States (Hernandez et al., 2013).

In this paper, we explain amethodology for incorporating hydrologic
data andkey ecohydrologic relationships into ESDs. The goal is to provide
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a framework for populating ecohydrologic information in ESDs and for
enhancing the utility of ESDs for assessing rangelands, identifying
threats/opportunities, and guiding resilience-based management
(e.g., Briske et al., 2008). We begin with identification of key data and
information required for ecohydrologic enhancement of ESDs. Second,
we identify an ES for development and demonstration of our proposed
framework. Third, we describe and demonstrate application of
the RHEM tool for predicting runoff and erosion data needed in ESDs.
We conclude with demonstration of the recommended framework
incorporating hydrologic data and ecohydrologic relationships into
the ESD concept and evaluation of the RHEM tool for refinement and
development of ESDs.
Development of Framework and Methodology

Ecohydrologic Data Required for ESDs

We developed a catalog (Table 2) of key variables and information
required for inclusion of ecohydrologic data and feedbacks into the cur-
rent ESD structure (see Table 1). The catalog separates data into two pri-
mary groups: 1) discrete quantitative data and 2) descriptive or
qualitative data on ecosystem function and response to management.
Discrete quantitative data consists of five subcategories: 1) climate,
2) vegetation and ground cover, 3) soil properties and soil water storage,
4) topography, and 5) hydrology and erosion. Vegetation and ground
cover, soil properties, and topography data collectively define the suscep-
tibility of a site to runoff and erosion (Figs. 2 and 3; Pierson et al., 2011;
Williams et al., 2014b). Climate data provide insight into potential
Table 2
Data required for describing and predicting hydrologic function and ecohydrologic feedbacks o

Data category Variables or description

Discrete quantitative data
Climate2–4 Precipitation and soil temperature regim

intensity/duration/frequency distributio
representative climate station4

Vegetation and ground cover2,4,5 Percent foliar and basal cover by plant g
percent ground cover by cover element
litter)4; percent bare soil; if woodland, p
covered by tree canopy and as intercano

Soil properties and soil water storage2,4,5–7 Aggregate stability; bulk density; depth
and/or bedrock; erodibility; hydraulic co
proportional area for exhibiting wettabl
moderate, and strong soil water repellen
water-holding capacity

Topography2,4,5 Hillslope angle4, length4, and shape4 (co
linear; S shaped)

Hydrology and erosion2,5,7 Cumulative runoff and erosion for design s
10-, 25-, 50-, 100-yr event) and annual ave

Descriptive qualitative data
Structural thresholds2,5 Indicators and drivers of structural thres

states and community phases

Functional thresholds2,5 Indicators and drivers of functional thre
states and community phases

Response to management2,5 Description of plant community dynami
management actions and climate

Rangeland health indicators2,5,6 See Pellant et al. (2005) for list of indica

1 See Table 1 for current Ecological Site Description (ESD) structure and feature de
2 See Bestelmeyer et al. (2009, 2010), Moseley et al. (2010), and USDA (2013) for guidance
3 Climate data sources include models such as Daymet (Thornton et al., 2012), NOAA Nation

2013), and Western Regional Climate Center (WRCC, 2013).
4 Data or variable required to populate and run Rangeland Hydrology and Erosion Model (RHE
5 Data sources include published literature and plot data (e.g., NRI data), local knowledge, and
6 Data sources include the National Cooperative Soil Survey (NCSS, 2013) and the Natural R
7 Data sources include hydrology and erosion models, such as the RHEM, and erodibility pre
storm magnitudes and associated recurrence intervals and, when evalu-
ated in context with site-susceptibility variables, provide information
for predicting hydrologic vulnerability (Fig. 2C; Pierson et al., 2011;
Williams et al., 2014b) and populating runoff and erosion prediction
tools. Predicted ormeasured hydrology (e.g., evapotranspiration, infiltra-
tion, runoff) and erosion data provide tangible measures of short- and
long-term hydrologic vulnerability for individual plant community
phases, disturbances, and conservation practices. The integration of dis-
crete quantitative datawith qualitative data on ecosystem dynamics pro-
vides an interpretative and management basis for assessing and
predicting ecological resilience of states and community phases, structur-
al and functional thresholds, transitions, and responses to disturbance
and management (Briske et al., 2008; Petersen et al., 2009). The sug-
gested data in Table 2 are currently required or recommended within
various feature areas of ESDs (see Table 1; USDA, 2013). However,
many approved ESDs are devoid of the suggested quantitative hydrology
and erosion data and its linkage to plant community dynamics and range-
land health. We suggest that the data requirements in Table 2 provide a
source for populating the “hydrologic functions” elementwithin the “eco-
logical site interpretations” feature (see Table 1) and that a well-
developed “hydrologic functions” section provides the basis for integra-
tion of key ecohydrologic data within the STM and community dynamics
content of the “states and community phases” feature.
Ecological Site and Associated Ecohydrologic Dynamics

The “South Slopes 12-16 Precipitation Zone (PZ)” (ID: R023XY302OR;
Table 3; NRCS, 2014) ES (hereafter referred to as the study site) was
n rangelands

Location in current ESD structure1

e; rainfall
n or

Climate feature

rowth form4;
(e.g., rock,
ercent of site
py

States and community phases feature (narrative; supporting
community phase documentation; community phase composition;
canopy or foliar cover; structure; ground surface cover)

to restrictive layer
nductivity;
e, slight,
cy; soil texture4;

Representative soil feature

ncave, convex; Physiographic feature

torms (e.g., 2-, 5-,
rages

States and community phases feature (narrative); ecological site
interpretations feature (hydrology functions); supporting
information feature (rangeland health reference sheet)

holds separating States and community phases feature (ecological site dynamics;
state-and-transition diagram; narrative); ecological site
interpretations feature (hydrologic functions)

sholds separating States and community phases feature (ecological site dynamics;
state-and-transition diagram; narrative); ecological site
interpretations feature (hydrologic functions)

cs relative to States and community phases feature (all sections therein);
ecological site interpretations feature (hydrology functions);
supporting information feature (rangeland health reference sheet)

tors Supporting information feature (rangeland health reference sheet)

scriptions.
on and data sources for the development of ESD features and STMs.
al Centers for Environmental Information (NOAA, 2013), PRISM (PRISM Climate Group,

M) for runoff and erosion estimates (Nearing et al., 2011; Al-Hamdan et al., 2015).
supportive field data collected for ESD development.
esources Conservation Service soil classification Web page (NRCS, 2013c).
dictive equations (see Al-Hamdan et al., 2012b, 2015).



Figure 3. Change in vegetation and ground surface conditions with postfire recovery
(A); and the associated decline in hydrologic vulnerability and shift in dominant erosion
processes with decreasing surface susceptibility during postfire recovery (B). Bare,
water-repellent soil conditions in the immediate postfire period facilitate runoff genera-
tion and promote formation of high-velocity concentrated flow. The decline in hydrologic
vulnerability with time post fire is strongly related to changes in ground surface condi-
tions that trap and store water and sediment and inhibit concentrated flow. Although
runoff and erosion rates commonly approach prefire levels within the first 3 years post
fire, burned rangelands remain susceptible to amplified runoff and soil loss from extreme
events until the biotic structure and overall conditions (e.g., vegetation and litter biomass,
well aggregated soils) return to near unburned conditions. Figuremodified fromWilliams
et al. (2014a,b) and Miller et al. (2013).

Table 3
Geographic, climatic, soils, and vegetation characteristics of the “South Slopes 12-16 PZ”
(R023XY302OR) Ecological Site as provided in the respective published Ecological Site
Description (NRCS, 2014)

Ecological site characteristics

Site name (ID) South Slopes 12-16 PZ (R023XY302OR)
Major Land Resource Area1 23—Malheur High Plateau (southeast OR,

northwest NV, and northeast CA)
Elevation (aspect, slope) 1200–2100 m (south-facing slopes, 15–80%

hillslope gradient)
Annual precipitation 300–400 mm (xeric regime)
Air temperature (frost-free days) –34.4°C minimum, 37.8°C maximum

(30-90 frost-free days y–1)
Soil depth (temperature regime) 0.35–1.0 m (frigid—low elevations,

cryic—upper elevations)
Surface soil texture medium-textured: gravelly sandy loam;

gravelly silt loam; cobbly clay loam
Soil water-holding capacity 25-117 mm (well-drained)
Reference plant community Pseudoroegneria spicata (Pursh) Á. Löve ssp.

spicata; Festuca idahoensis Elmer; Poa
secunda J. Presl; Achnatherum thurberianum
(Piper) Barkworth; Artemisia tridentata
Nutt. ssp. vaseyana (Rydb.) Beetle;
Artemisia tridentata Nutt. ssp. tridentata;
and Purshia tridentata (Pursh) DC

1USDA, 2006
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selected for evaluation and ecohydrologic enhancement in this study. The
study site was selected due to the wealth of published literature on plant
community dynamics and similarities in hydrologic function relative to
comparable ecological sites (Miller et al., 2005, 2013; Pierson et al.,
2007, 2008a,b, 2009, 2013; Petersen and Stringham, 2008; Bates and
Svejcar, 2009; Petersen et al., 2009; Davies and Bates, 2010; Bates et al.,
2011, 2014; Davies et al., 2012;Williams et al., 2014a). Summary charac-
teristics from theNRCS ESD of the study site are provided in Table 3, and
a generalized STM is shown in Fig. 1 (adapted from the NRCS-published
STM (NRCS, 2014).).

The NRCS ESD describes five ecological states for the study site
(NRCS, 2014). The Reference State (State 1) consists of two community
phases: 1.1) a reference plant community phase with an understory of
bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] Á. Löve
ssp. spicata), Idaho fescue (Festuca idahoensis Elmer), Sandberg
bluegrass (Poa secunda J. Presl), Thurber’s needlegrass (Achnatherum
thurberianum [Piper] Barkworth) and other perennial grasses, a shrub
component mainly of mountain big (Artemisia tridentata Nutt. ssp.
vaseyana [Rydb.] Beetle) and basin big sagebrush (A. tridentata Nutt.
ssp. tridentata), and antelope bitterbush (Purshia tridentata [Pursh]
DC.) and 1.2) a second phase, facilitated by burning, that is dominated
by bluebunch wheatgrass, Idaho fescue, Thurber’s needlegrass, and
other perennial grasses and forbs. Invasion of the Reference State by
annual grasses and forbs facilitates transition to State 2. State 2 includes
three community phases: 2.1) one with primarily sagebrush-steppe
vegetation and trace coverage of cheatgrass (Bromus tectorum L.) and
annual weeds; 2.2) a second phase, promoted by mismanaged grazing
or reduced fire, with increased coverage of sagebrush and Sandberg
bluegrass and trace amounts of cheatgrass and annual weeds; and
2.3) a fire-limited phase with early-succession western juniper
(Juniperus occidentalisHook.) encroachment, sagebrush, Sandberg blue-
grass, and trace amounts of cheatgrass and annual weeds. Drought, im-
proper grazing, or fire exclusion in State 2 promote transition to State 3.
As juniper cover increases, sagebrush, grasses, and forbs decline due to
competition for site resources (Bates et al., 2000; Miller et al., 2000,
2005; Roberts and Jones, 2000; Petersen et al., 2009). In State 3, juniper
dominates site resources (biotic threshold), sagebrush and other shrubs
decline, and extensive bare ground develops in the intercanopy (Miller
et al., 2000, 2005; Pierson et al., 2007, 2013; Williams et al., 2014a).
Sandberg bluegrass becomes the dominant grass species in State 3,
and other perennial grasses are reduced in abundance and productivity
(NRCS, 2014). Juniper woodland development is complete in State 3
and soil loss increases, ultimately driving the site across an abiotic
threshold to transition to State 4 (NRCS, 2014). In State 4, the site
is dominated by juniper, soil loss is evident, and all ecological process-
es have been significantly altered, limiting perennial plant re-
establishment (NRCS, 2014). Catastrophic wildfire in State 4 promotes
transition to State 5. In State 5, cheatgrass dominates the site, there is
essentially no shrub or perennial grass component, and the hydrologic
and nutrient cycles are negatively affected through changes in dynamic
soil properties and soil loss (NRCS, 2014). Transition to State 5 sets a
course for more frequent burning (annual grass-fire cycle) than prein-
vasion, and the repeated grass-fire cycle perpetuates the cheatgrass
monoculture (Knapp, 1996; Duke and Caldwell, 2001; Brooks et al.,
2004; Miller et al., 2011).

Changes in plant community physiognomy across the multiple states
educe important shifts in hydrologic and erosion processes and retention
of water and soil resources. Runoff and erosion are minimal for the
reference community vegetation type (Petersen and Stringham, 2008;
Pierson et al., 2008a, 2009; Petersen et al., 2009). Runoff and erosion
on the Reference State occur primarily by rainsplash and sheetflow
(see Fig. 2) due to dense vegetation and litter cover (Table 4; Pierson
et al., 2011;Williams et al., 2014b). Increasedwestern juniper cover asso-
ciated with fire exclusion enhances connectivity of bare ground and



Table 4
Percent cover by growth form applied in RHEM1 hydrologic and erosion modeling for plant community phases (see Fig. 1) and various disturbances and conservation practices on the
“South Slopes 12-16 PZ” (R023XY302OR) Ecological Site (NRCS, 2014). Values are approximated from literature2 on the study site and other similar ecological sites

State or community phase; disturbance3; or conservation practice3 Shrub foliar
cover
(%)

Grass foliar
cover
(%)

Forb foliar
cover
(%)

Basal ground
cover
(%)

Litter ground
cover
(%)

Cryptogam ground
cover
(%)

Rock ground
cover
(%)

Bare
soil
(%)

Reference State, Phase 1.1 sagebrush,4 perennial
grasses, and forbs

28 14 12 25 40 2 3 30

Reference State, Phase 1.2 perennial grasses and forbs 12 24 6 25 40 2 3 30
State 2, Phase 2.1 sagebrush4-steppe with cheatgrass5 16 20 10 20 40 2 3 35
State 2, Phase 2.2 sagebrush4 with cheatgrass5 25 15 5 20 40 1 4 35
State 2, Phase 2.3 juniper,6 sagebrush,4 and cheatgrass5

(5% juniper6 cover)
20 15 5 17 38 1 5 39

State 3, Phase 3.1 juniper6-dominated (intercanopy
only, 70% of total area)

7 10 3 10 18 0 12 60

State 4, Phase 4.1 juniper6-eroded (intercanopy only,
70% of total area)

2 6 2 4 10 0 14 72

State 5, Phase 5.1 cheatgrass5 1 35 5 20 40 0 5 35
States 1, 2, & 5 immediately following wildfire 1 0 0 1 5 0 5 89
States 1-2 immediately following prescribed fire 5 1 1 1 10 0 5 84
States 3-4 immediately following wildfire7

Intercanopy (70% of area) 1 0 0 1 1 0 19 79
Canopy (30% of area) 1 0 0 1 5 0 14 80

State 3 immediately following prescribed fire7

Intercanopy (70% of area) 1 5 1 5 6 0 19 70
Canopy (30% of area) 1 1 1 1 16 0 14 69

State 3 approximately 10 yr after prescribed fire 10 15 10 20 35 0 5 40

1 Rangeland Hydrology and Erosion Model (Nearing et al., 2011; Al-Hamdan et al., 2015).
2 Bates et al., 2000; Miller et al., 2000; Bates et al., 2005; Pierson et al., 2007; Bates and Svejcar, 2009; Pierson et al., 2009; Davies and Bates, 2010; Bates et al., 2011; Davies et al., 2012;

Miller et al., 2013; Pierson et al., 2013; Williams et al., 2014a.
3 State and/or community phase shown for disturbances and conservation practices indicates the state and/or phase at the time of disturbance or treatment. Cover values shown reflect

the effect of the treatment applied to the specified state and/or community phase.
4 Artemisia tridentata Nutt. ssp. vaseyana [Rydb.] Beetle and A. tridentata Nutt. ssp. tridentata.
5 Bromus tectorum L.
6 Juniperus occidentalis Hook.
7 Nearly 100% of juniper burned.
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runoff sources and promotes formation of high-velocity concentrated
flow through bare intercanopy areas (see Fig. 2; Pierson et al., 2007;
Petersen and Stringham, 2008; Petersen et al., 2009; Pierson et al.,
2013; Williams et al., 2014a). Concentrated flow has greater sediment
transport and detachment capacity than rainsplash and sheetflow and
results in greater soil loss relative to conditions representative of the
Reference State (Pierson et al., 2008a, 2009, 2013; Williams et al.,
2014a; Pierson et al., 2015). Increased runoff and soil loss result in a re-
duced retention of water and nutrients (Miller et al., 2005). Increased
bare ground following juniper dominance also increases soil water
loss to evapotranspirationwithout beneficial intercanopy plant produc-
tivity, effectively isolating soil water and soil nutrients to tree islands
(Klemmedson and Tiedemann, 2000; Newman et al., 2010). The effects
of cheatgrass on infiltration, runoff, and soils are not well known with
exception of the postfire environment (Wilcox et al., 2012b). Fire re-
moval of cover for either state increases the connectivity of runoff and
erosion generating bare ground and facilitates a temporary shift to con-
centrated flow as the dominant erosion process across the site (see
Fig. 3; Pierson et al., 2011; Al-Hamdan et al., 2013; Williams
et al., 2014a,b, 2015). The temporal stability of the process shift de-
pends on factors such as the prefire vegetation and cover (i.e., state or
phase), postfire precipitation and vegetation recovery, and land use
(Pierson et al., 2011; Miller et al., 2013; Williams et al., 2014b). Postfire
vegetation and hydrologic recovery is generallymore rapid for the Refer-
ence State and State 2 due to the presence of perennial grasses (Miller
et al., 2005; Pierson et al., 2009; Bates et al., 2014;Miller et al., 2014). Per-
sistence of State 4 is associatedwith long-term soil loss and site degrada-
tion (Miller et al., 2005). Increased fire frequency in the cheatgrass-
dominated State 5 increases the frequency of bare ground exposure to
erosion processes and likely results in long-term loss of nutrient rich sur-
face soil through repeated erosion by runoff and wind (Pierson et al.,
2011; Sankey et al., 2012; Wilcox et al., 2012b; Williams et al., 2014b).
Understanding and quantification of the key ecohydrologic relationships
discussed herein are necessary to appropriately assess the potential im-
pacts of state transitions and management practices (e.g. prescribed
burning and tree removal) for the study site.

Hydrology and Erosion Modeling

The RHEM tool (Nearing et al., 2011; Al-Hamdan et al., 2015), Version
2.1,was applied to estimate event and annual runoff and erosion for each
community phase of the South Slopes 12-16 PZ ES (see Table 3) and for
dynamic vegetation conditions induced by conservation practices and
disturbances. RHEM is a modified version of the Water Erosion
Prediction Project (WEPP) model (Flanagan and Nearing, 1995) and
was developed specifically for simulation of hillslope-scale runoff and
erosion from rangelands (Nearing et al., 2011; Al-Hamdan et al., 2015).
RHEM requires the following user input: 1) climate data (obtained via
the CLIGEN climate generator [Zhang and Garbrecht, 2003] within
model interface); 2) surface soil texture class (upper 4 cm); 3) hillslope
length, gradient, and shape (uniform, convex, concave, or S shaped);
4) vegetation (foliar and basal cover); and 5) ground cover (rock, litter,
and cryptogams cover). The data required to run RHEM are commonly
available from literature, local data sources, and rangeland databases
(Weltz and Spaeth, 2012; Hernandez et al., 2013; NRCS, 2013b) and
are required for ESD development (see Tables 1 and 2; USDA, 2013).
RHEM simulations for multiple ecological states or phases can be run
separately and then compared side-by-side within the model interface.
The model produces graphical and tabulated output for annual and
event (2-, 5-, 10-, 25-, 50-, and 100-yr runoff events) precipitation,
runoff, and erosion based on a CLIGEN-generated 300-year record of
precipitation events. The RHEM tool and documentation are available
free of charge on the Web at: http://apps.tucson.ars.ag.gov/rhem/.

A baseline RHEM model was configured to represent community
phases, conservation practices, and disturbances using a single CLIGEN
station (Sheaville, OR, USA, Station ID: 357736, 1396 m elevation,

http://apps.tucson.ars.ag.gov/rhem/


Table 5
Hydrologic functions table developed from RHEM1 predicted runoff and erosion and associated hydrologic interpretations for a subset of community phases, disturbances, and conserva-
tion practices on the “South Slopes 12-16 PZ” (R023XY302OR) Ecological Site (NRCS, 2014) as characterized in Tables 3 and 4

Average
annual

2-yr
event

10-yr
event

50-yr
event

100-yr
event

Hydrologic interpretation2

Precipitation (mm) 314 24 35 48 57
State 1, Phase 1.1—sagebrush3, perennial
grasses, and forbs

Ample vegetation and litter promote good infiltration and low runoff and
soil loss at the annual scale and for most storms. Runoff and erosion occur
primarily by rainsplash and sheetflow in isolated bare patches, but off-site
runoff and sediment delivery are minimal except for rare and extreme
(N100-yr) events. High infiltration rates recharge soil water and sustain
site productivity (high resilience).

Runoff (mm) 1 0 4 9 13
Erosion (t·ha-1) 0.1 0.0 0.3 0.6 0.8

State 1, Phase 1.2—perennial grasses and
forbs
Runoff (mm) 2 0 6 11 15
Erosion (t·ha-1) 0.1 0.0 0.4 0.7 0.9

State 2, Phase 2.1—sagebrush-steppe3 with
cheatgrass4

State 2 is structurally and hydrologically similar to Phase 1.1. Runoff and
erosion are generally low due to ample vegetation and ground cover and
occur primarily by isolated rainsplash and sheetflow. Woodland
encroachment (Phase 2.3) facilitates competition for limited water and soil
nutrients, resulting in increased bare ground. Competition-induced
declines in understory vegetation are most evident on sites with shallow
soils (b0.6 m depth) and limited soil water storage. Increased bare ground
promotes runoff and soil erosion by concentrated flow during high
intensity rainfall events (25-yr+ events) and induces a decrease in
ecohydrologic resilience. Bare ground N 40% further enhances runoff
generation and overland flow, reduces intercanopy soil water recharge,
and promotes transition to State 3.

Runoff (mm) 2 0 6 11 16
Erosion (t·ha-1) 0.1 0.0 0.4 0.7 1.0

State 2, Phase 2.2—sagebrush3 with
cheatgrass4

Runoff (mm) 2 0 6 11 16
Erosion (t·ha-1) 0.1 0.0 0.4 0.7 1.0

State 2, Phase 2.3—juniper5, sagebrush3,
and cheatgrass4

Runoff (mm) 3 1 8 13 18
Erosion (t·ha-1) 0.2 0.0 0.5 0.8 1.1

State 3, Phase 3.1—juniper5-dominated State 3 represents a shift from biotic-controlled infiltration and soil
retention to abiotic-driven loss of critical soil resources. Bare ground N 50%
promotes decreased aggregate stability, connectivity and concentration of
runoff, and increased soil loss across spatial scales. Water flow patterns,
terracettes, and litter movement may be evident. Persistence facilitates
transition to State 4.

Runoff (mm)6 8 4 10 13 18
Erosion (t·ha-1)6 0.8 0.3 0.9 1.2 1.7

State 4, Phase 4.1—juniper5-eroded
conditions

Intercanopy (usually at least 70% of area) may be 90% bare ground,
concentrated flow is dominant erosion process, and high runoff and
erosion sustain the degraded state. Intercanopy aggregate stability is low,
and water flow paths and terracettes are evident. Restoration of vegetation
and hydrologic function to that of States 2-3 is considered extremely
difficult. Burning may promote transition to State 5.

Runoff (mm)6 15 6 12 17 22
Erosion (t·ha–1)6 1.7 0.6 1.3 1.8 2.4

State 5, Phase 5.1—cheatgrass4 Ample cover results in relatively low runoff/erosion rates for unburned
conditions, but cheatgrass4 promotes increased fire size and frequency
(every 3-5+ yr, abiotic threshold). Recurring fire may result in long-term
loss of soil resources (see burned States 1, 2, and 5); however, knowledge
is limited regarding long-term effects of cheatgrass4 dominance on
hydrologic function and soil loss.

Runoff (mm) 3 0 7 12 17
Erosion (t·ha–1) 0.2 0.0 0.4 0.7 1.0

States 1, 2, 5—immediately after wildfire Runoff and erosion increase substantially post fire due to shift to
concentrated flow as the dominant erosion process, particularly where
bare ground N 60% and soils are water repellent. Relative hydrologic and
erosion recovery common in 1 and 3-5 yr, respectively, or when ground
cover ≥ 50%. Fire-induced increases in runoff and erosion are generally less
for prescribed burns, and the vegetation and overall hydrologic recovery
periods for prescribed fires are generally shorter (1–2 yr). Poor postfire
plant recruitment extends elevated runoff and soil loss period. Transition
from State 2 to State 5 possible with cheatgrass4 present.

Runoff (mm) 35 11 20 32 34
Erosion (t·ha–1) 17.5 5.5 12.7 21.7 25.8

States 1 and 2—immediately after
prescribed fire
Runoff (mm) 30 10 19 30 32
Erosion (t·ha–1) 12.5 4.1 9.9 17.1 20.9

States 3 and 4—immediately after wildfire Extensive bare ground postfire results in amplified runoff and substantial
erosion at annual and individual storm time scales. Length of vegetation
and hydrologic recovery periods are unknown. Restoration of severely
burned sites in State 3 considered difficult without intensive management
to restore understory vegetation. Irreversible transition to State 5 possible.

Runoff (mm)7 26 9 18 28 32
Erosion (t·ha–1)7 9.9 3.4 8.5 14.8 18.2

State 3—immediately after prescribed fire Low to moderate severity fire increases erosion from concentrated flow,
but erosion is reduced to rates similar to Phase 2.3 (in 3–5 yr) by seeding
success or with good postfire plant recovery. Poor postfire plant
recruitment extends elevated runoff and soil loss period.

Runoff (mm)7 21 8 17 24 31
Erosion (t·ha–1)7 5.6 2.1 5.4 9.6 11.9

State 3—approximately 10 yr after
prescribed fire

Enhanced intercanopy grass and forb cover (relative to States 3 and
4) reduce bare ground exposure to rainfall and runoff, trap rainfall and
overland flow, improve infiltration, and reduce soil erosion to levels
similar to State 2. Vegetation and associated hydrologic recovery strongly
depend on ample precipitation post treatment and are more rapid on sites
with shallow soils.

Runoff (mm) 4 1 8 13 19
Erosion (t·ha–1) 0.3 0.1 0.6 0.9 1.3

1 Rangeland Hydrology and Erosion Model (Nearing et al., 2011; Al-Hamdan et al., 2015) parameterized as follows: loam surface soil texture, 50 m slope length, uniform slope shape,
35% slope gradient, state- and phase-specific cover as shown in Table 4, and climate data from the Sheaville, OR, U.S. climate station (ID: 357736).

2 Key citations: Craddock and Pearse, 1938; Pierson et al., 1994, 2007, 2008a,b, 2009; Cline et al., 2010; Pierson et al., 2010, 2011;Wilcox et al., 2012b; Pierson et al., 2013, 2014;Williams
et al., 2014a,b.

3 Artemisia tridentata Nutt. ssp. vaseyana [Rydb.] Beetle and A. tridentata Nutt. ssp. tridentata.
4 Bromus tectorum L.
5 Juniperus occidentalis Hook.
6 Value is 70% of that reported by RHEM for intercanopy parameterization (see Table 4). Intercanopy represents 70% of the total area. Remainder is area under tree canopy, where runoff

and erosion are assumed negligible (Pierson et al., 2010, 2013; Williams et al., 2014a; Pierson et al., 2014).
7 Value is sum of area weighted RHEM results for burned intercanopy (weighted by 0.7) and canopy (weighted by 0.3) areas.
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315mmannual precipitation); loam surface soil texture (46% sand, 39%
silt, 15% clay); 50-m hillslope length; uniform slope topography; and
35% slope gradient representative of the climate, soil, and topographic
attributes for the study site (see Table 3). This study used a recently
enhanced version of RHEM as described by Al-Hamdan et al. (2015)
for unburned and burned vegetation and soil conditions. The enhanced
version requires the following input amendments to the online version
of the model, as specified by Al-Hamdan et al. (2015): 1) for unburned
conditions, calculation and input of an average concentrated flow
erodibility factor, and 2) for burned conditions, calculation and input
of an average and a maximum concentrated flow erodibility factor and
an erodibility decay constant. We used the following equations from
Al-Hamdan et al. (2015) to calculate average concentrated flow
erodibility factors (Kω, s2•m–2) for all modeled unburned and burned
states and phases:

log Kωð Þ ¼ –4:14– 1:28� resð Þ– 0:98� rockð Þ– 15:16� clayð Þ
þ 7:09� siltð Þ

ð1Þ

and, for burned conditions, to calculate maximum concentrated flow
erodibility (Kω(max)adj, s2•m–2):

log Kω maxð Þad j
� �

¼ –3:64– 1:97� resþ bascryð Þ½ �– 1:85� rockð Þ
– 4:99� clayð Þ þ 6:06� siltð Þ

ð2Þ

The variables res, rock, clay, silt, and bascry are, respectively, the per-
centages (in decimal form) of residue (i.e., litter), surface rock cover,
surface soil clay and silt contents, and the sum of total basal and crypto-
gam covers. We applied the value –5.53 m–2 as the erodibility decay
constant for the burned simulations, as suggested by Al-Hamdan et al.
(2015). The calculated erodibility factors and decay constant for each
Figure 4. Example state-and-transition (STM)model showing fundamental components of amu
2008), and Bestelmeyer et al. (2009, 2010) andwith quantitative and qualitative ecohydrologic
Community phaseswithin states are shown by light gray rectangles. Cumulative runoff and eros
Al-Hamdan et al., 2015), are shown for the average annual time step and for the 10-yr, 50-yr, a
arrows.Within-state community pathways are indicated bydotted black arrows. Restoration pa
each of the plant community phases shown.
RHEM simulation were entered into the model interface through
replacement of the respective default parameters. Our baseline RHEM
model was applied to each community phase, conservation practice,
and disturbance by adjusting cover characteristics (retaining the
baseline climate, soil, and topography data) to reflect changes in the
community composition as shown in Table 4. We did not attempt
to represent all possible conservation practices and disturbances appli-
cable to the study site. Rather, we selected limited scenarios (wildfire
and prescribed fire) commonly associated with management of the
study site and other similar ESs to demonstrate the utility of RHEM in
guiding management within the ESD concept.

Currently, RHEM does not include hydrologic and erosion parame-
terization for conifers. Therefore, the baseline RHEM runs for States 3
and 4 without fire (juniper-dominated and juniper-eroded states)
were populated with cover data for intercanopy areas solely (see
Table 4). We assumed runoff and erosion were minimal from tree
canopy areas in States 3 and 4 based on our previous studies of wood-
land runoff and erosion (Pierson et al., 2010, 2013, 2014; Williams
et al., 2014a). To account for this assumption, we scaled the RHEM-
predicted cumulative runoff and erosion values for unburned States 3
and 4 by the percent area representative of the intercanopy, assumed
to be 70% of the total area (see Table 4). For conditions immediately
postfire, RHEM simulations were populated for both the tree canopy
and intercanopy areas as shown in Table 4. Runoff and erosion rates
are typically greater from burned tree canopy than intercanopy areas
the first few years postfire and must be accounted for in assessing
overall fire effects (Pierson et al., 2013, 2014; Williams et al., 2014a).
Site-level cumulative runoff and erosion for burned woodland condi-
tions were calculated by area-weighting (0.3 for canopy areas and 0.7
for intercanopy) RHEM-predicted runoff and erosion for the separate
tree canopy and intercanopy model runs. Longer-term effects (~10 yr)
ltiple-state ecological site as described by Stringhamet al. (2003), Briske et al. (2005, 2006,
information suggested by this study. Ecological states are outlined by bold black rectangles.
ion, as predicted by the Rangeland Hydrology and Erosion Model (Nearing et al., 2011;
nd 100-yr events for each community phase. State transitions are indicated by solid black
thways are indicated bydashedblack arrows. See Table 4 for vegetation characterization of



Table 6
Example of ecohydrologic-based narrative for the ecological site dynamics and state and transition model components of the state and community phases feature in an Ecological Site
Description (USDA, 2013). See Figs. 1 and 4 for respective state and transition model of example ecological site, “South Slopes 12-16 PZ” (R023XY302OR)

State and Phase Community Characteristics Community Pathways/Transitions and Resilience

1. Reference state
1.1 Sagebrush, perennial grasses and forbs Mountain big sagebrush (Artemisia tridentata Nutt. ssp.

vaseyana [Rydb.] Beetle) and basin big sagebrush
(A. tridentata Nutt. ssp. tridentata) overstory with
bitterbrush (Purshia tridentata [Pursh] DC.); bluebunch
wheatgrass (Pseudoroegneria spicata [Pursh] Á. Löve), Idaho
fescue (Festuca idahoensis Elmer), Sandberg bluegrass (Poa
secunda J. Presl; minor amounts), and Thurber’s needlegrass
(Achnatherum thurberianum (Piper) Barkworth) understory.

Plant community phase change is controlled by fire. Ample
cover favors infiltration and retention of water and soil
resources (high resilience). Runoff and erosion are low and
biotically controlled by the plant community physiognomy.
Fire promotes shift to Phase 1.2. Burning alters surface
susceptibility to runoff and erosion and dramatically
increases annual and event responses (see hydrologic
interpretations section). Runoff and erosion rates post fire
generally return to near prefire levels within 1–3 years with
successful ground cover recovery (bare b 50%). Cheatgrass
(Bromus tectorum L.) invasion promotes transition to State 2.

1.2 Perennial grasses and forbs Co-dominated by bluebunch wheatgrass, Idaho fescue, and
Thurber’s needlegrass. Sandberg bluegrass and perennial
forbs subdominant. Limited sagebrush and bitterbrush.
Rabbitbrush (Chrysothamnus viscidiflorus [Hook.] Nutt.) may
be extensive following fire.

Phase results from burning Phase 1.1 or successful
restoration from other States. Runoff and erosion rates are
elevated relative to Phase 1.1 in recovery years postfire. Once
stable, plant community promotes infiltration and retention
of water and soil resources (biotic control, high resilience)
that sustain plant productivity. As with Phase 1.1, burning
increases runoff and erosion (see hydrologic interpretations
section). Runoff and erosion rates post fire generally return
to near prefire levels within 1-3 yr with ground cover
recovery (bare b 50%; threshold). Lack of fire is pathway to
Phase 1.1. Cheatgrass invasion promotes State 2.

2. Shrub-steppe with annuals
2.1 Sagebrush-steppe and cheatgrass Plant community consistent with that of Phase 1.1 except

that cheatgrass is present in trace amounts.
Phase is promoted by invasion of cheatgrass into State 1.
Hydrologic vulnerability is low, as with State 1. Burning
results in similar community as Phase 1.2, but with
cheatgrass. High-severity fire may favor State 5 transition. As
in State 1, burning increases risk of runoff and erosion (see
hydrologic interpretations section). Runoff and erosion rates
post fire generally return to near prefire levels within 1–3 yr
with ground cover recovery (bare b 50%; threshold).
Reduced fire (drought, land use, etc.) facilitates increased
shrub cover and shift to Phase 2.2. Western juniper
(Juniperus occidentalis Hook.) invasion with reduced fire is
pathway to Phase 2.3.

2.2 Sagebrush and cheatgrass Overstory dominated by mountain big and basin big
sagebrush. Understory dominated by Sandberg bluegrass.
Other native perennials present, but at limited density and
with low vigor. Cheatgrass present at least in trace amounts.

Overall hydrologic vulnerability similar to State 1, with
runoff and erosion low due to ample cover (biotically
controlled). Runoff and erosion occur as rainsplash and
sheetflow in isolated bare patches. Burning results in similar
community as Phase 1.2, but with cheatgrass. As in State 1,
burning dramatically increases runoff and erosion at annual
and event scales. Runoff and erosion rates postfire generally
return to near prefire levels within 1–3 yr with ground cover
recovery (bare b 50%; threshold). Under drought conditions
or heavy grazing, fire frequency and herbaceous cover
decline and susceptibility to runoff and erosion increases.
Juniper encroachment fire-free periods facilitate Phase 2.3
and further increase runoff and erosion rates.

2.3 Juniper, sagebrush, and cheatgrass Plant community similar to that of Phase 2.2, but with
juniper present. Cheatgrass is present. Sandberg bluegrass is
dominant perennial. Other native perennials present, but
with very low vigor. Bare ground greater than Phase 2.2.

Phase contains similar ground cover as State 1 and other
Phases in State 2, but bare ground is increasing. Runoff and
erosion rates remain low and biotically regulated and are
generally consistent with Phase 2.2. Severe fire promotes
transition to State 5 depending on cheatgrass cover. Low to
moderate severity fire can facilitate a community similar to
that of Phase 1.2 with cheatgrass and prevent transition to
State 3. Extensive bare ground postfire enhances concentrated
flow and results in high runoff and erosion rates in the years
immediately postfire. However, runoff and erosion rates
postfire generally return to near prefire levels within 1–3 yr
with ground cover recovery (bare b 50%; threshold). Drought,
improper grazing, and lack of fire advance State 3.

3. Juniper-dominated
3.1 At-risk phase–juniper-dominated Overstory dominated by juniper with mountain big and

basin big sagebrush as subdominant (but with decreased
vigor). Sandberg bluegrass is dominant understory grass.
Other perennial grasses present in trace amounts.
Bitterbrush present, but with low vigor. Extensive bare
ground in the intercanopy between trees. Cheatgrass is
present at least in trace amount.

Extensive bare intercanopy area (bare N 40%) develops and
becomes source of runoff and sediment detachment by
rainsplash and overland flow. Concentrated flow develops
during intense rainfall, resulting in increases in runoff and
erosion (onset of abiotically controlled soil loss; structural/
functional threshold). Burning creates uniform bare ground, and
water repellent soils under burned trees promote rapid runoff.
Postfire runoff and erosion rates can be 2- to more than 10-fold
higher than for unburned conditions. Burning may create a
restoration pathway to State 2 by decreasing understory
competition with trees, but restoration may require seeding.

(continued on next page)
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Table 6 (continued)

State and Phase Community Characteristics Community Pathways/Transitions and Resilience

Severe fire and cheatgrass re-establishment foster transition to
State 5. Long-term runoff and erosion are reduced by tree
removal where vegetation and ground cover return to levels of
State 2. A lack of fire associated with drought and/or improper
grazing promotes woodland succession and extensive
intercanopy bare ground. Intercanopy bare ground in excess of
50–60% is warning sign for likely transition to State 4 and
persistence of abiotic-driven soil loss.

4. Juniper-dominated eroded
4.1 Juniper eroded Dominated by juniper. Sandberg bluegrass is dominant

grass; remnants of bluebunch wheatgrass and Idaho fescue
may be present. Shrub cover minimal with mortality N 75%.
Bare ground extensive in intercanopy, often N 60%.
Cheatgrass present, but typically b 5% cover.

Lack of fire sustains juniper dominance, decreased shrub/
understory cover, and extensive intercanopy bare ground,
commonly 60+% (structural/functional threshold for
persistence of abiotic control). Runoff and erosion extensive (can
be 2- to more than 10-fold higher than reference state) and
potential exists for long-term loss of critical soil resources.
Burning with cheatgrass re-establishment advances State 5. This
state is considered difficult to reverse.

5. Cheatgrass
5.1 Cheatgrass Plant community is cheatgrass-dominated with little to no

shrub cover or perennial grasses.
Results from frequent burning (3–15 years) or drought. High
erosion by wind/water (2- to more than 100-fold N reference
state) likely in immediate postfire years. Sustained grass-fire
cycle represents an abiotic threshold, as restoration of State 2
is difficult without adequate seeding and posttreatment
precipitation. Long-term loss of critical soil resources.
Transition is difficult to reverse.
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of burning State 3 were evaluated by populating RHEM with site-level
cover characteristics shown in Table 4. Separate runs for tree canopy
versus intercanopy areas were not considered for the longer-term
effects given the tree canopies were no longer present. Residual effects
of tree mounds were accounted for through the litter cover variable
and its effect on RHEM-predicted infiltration, runoff, and erosion
(Nearing et al., 2011; Al-Hamdan et al., 2012b, 2015).

We also assessed the effect of static site characteristics (soil texture
and slope gradient) on RHEM-predicted runoff and erosion using cover
data for unburned conditions of State 4 (juniper-eroded, intercanopy
only). To assess the effect of soil texture, the baseline RHEM model for
State 4 was rerun, but with cases of silt loam (35% sand, 50% silt, 15%
clay) and sandy loam (55% sand, 30% silt, 15% clay) surface soil textures,
common along gradients between the study ESD and neighboring ESDs.
To assess the effect of slope gradient, the baseline RHEM model was
rerun for State 4 for cases with slope gradient set to the minimum
(15%) and maximum (80%) values in the NRCS-published ESD for the
study site (see Table 3). The aggregated effects of burning, soil texture,
and slope gradient on runoff and erosion for State 4 were also assessed
using the followingmodel scenarios: 1) baselinemodel with burned veg-
etation conditions, the silt loam soil texture, and a 15% slope gradient, and
2) baselinemodel with burned vegetation conditions, the sandy loam soil
texture, and an 80% slope gradient. The model runs for varying soil tex-
ture, slope gradient, and aggregated effects explore the utility of RHEM
for evaluating further division of currently mapped ESDs and assessing
the influence of soils and topography on treatment effects for ecological
sites with wide-ranging hillslope steepness and along soil transitions.

Application of the Framework

Description of Framework

The proposed framework for integration of hydrologic data and
ecohydrologic feedbacks into ESDs consists of three primary steps:
1) acquisition of required data (see Tables 2–4), 2) compilation of a
“hydrologic functions” table (Table 5), and 3) integration of the informa-
tion from the “hydrologic functions” table into the STMand site-narrative
elements of the “states and community phases” feature (see Fig. 4,
Table 6). In the case of new ESD development, NRCS-recommended
steps (USDA, 2013) should be taken to develop the primary ESD features
(see Table 1) before compilation of the “hydrologic functions” table. In
the case of existing ESDs, much of the required quantitative and qualita-
tive data are already available within the approved and published ESD
(NRCS, 2013a). Literature and local and regional databases are additional
sources for populating the required data (see Table 2). Quantitative
hydrologic and erosion data for applying the framework can be acquired
through RHEM simulations using the necessary site descriptive data
as described earlier. Development of the “hydrologic functions” table
requires quantitative runoff and erosion data and knowledge of hydro-
logic responses to transitions in ecosystem structure and function relative
to each community phase, disturbance, and conservation practice.

An example “hydrologic functions” table for the South Slopes 12-16
PZ ES is shown in Table 5. The example provides relative measures of
precipitation, runoff, and erosion at the annual and return-interval
event scales in context with hydrologic interpretations of the associated
plant community dynamics. The hydrologic interpretations define key
ecohydrologic relationships, early warning signs of state transitions,
structural and functional thresholds thatmark transitions, and applicable
rangeland health indicators. Key elements (e.g., structural-functional
thresholds, rangeland health indicators) identified in the “hydrologic
functions” table can then be integrated with the runoff and erosion and
community dynamics data into the STM and site narrative as demon-
strated in Fig. 4 and Table 6 for the South Slopes 12-16 PZ ES. The
integrated STM and narrative provides a model of plant community
dynamics and ecohydrologic feedbacks that regulate persistence and
transitions of the various states and community phases. Inclusion of
the hydrologic data and indicators of looming thresholds and state
transitions provides a basis for evaluating current conditions, targeting
management strategies, assessing disturbance effects, and forecasting
long-term benefits of applied conservation practices (Briske et al.,
2006, 2008; Bestelmeyer et al., 2010; Herrick et al., 2012; Williams
et al., 2014a). Our detailed STM (see Fig. 4) can be reduced to a more
simplifiedpresentation if desired but is provided in this study to visualize
the integration of hydrology data with the ecological state dynamics.
Where a more simplified STM is desired, the key ecohydrologic relation-
ships can simply be retained in the site narrative (see Table 6) and
hydrologic functions section (see Table 5).

Application to the South Slopes 12-16 PZ Ecological Site

Application of the proposed framework to the South Slopes 12-16 PZ
ES is demonstrated in Tables 5 and 6 and Fig. 4. The aggregated
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information provides a description of ecosystem feedbacks and a pre-
dictive model for guiding resilience-based management as described
herein. The South Slopes 12-16 PZ ES is subject to twomajor plant com-
munity transitions (western juniper encroachment and cheatgrass
invasion) that mark undesired shifts in ecosystem structure, function,
and resilience. Two states, the Reference State and State 2, are
composed primarily of sagebrush and various grasses and forbs (see
Fig. 1). For these states, the dense vegetation and ground cover promote
infiltration and soil retention that, in turn, enhance plant productivity
(negative feedback, see Figs. 1 and 4; Table 5). Runoff and erosion are
generally low for the Reference State and State 2 except for extreme
events (25-yr to N 100-yr events; see Table 5). These states exhibit
moderate to high ecological resilience due to ecohydrologic feedbacks,
but resilience declines for State 2 under drought and fire-free periods
(see Tables 5 and 6). Burning of State 2 dramatically increases runoff
and erosion within the first few years postfire (see Table 5; Fig. 4), but
ground cover recovery is commonly more rapid than for wildfire or
prescribed fire in western juniper-dominated States 3 and 4 (Pierson
et al., 2009; Miller et al., 2013; Pierson et al., 2013; Williams et al.,
2014a; Table 6). Decreased ground cover associated with western
juniper encroachment (Phase 2.3) during fire-free periods increases
runoff and erosion for storms ≥ 10-yr rainfall event (see Table 5). Sites
with shallow soil depths (b0.6 m depth) may exhibit more rapid de-
clines in understory vegetation following juniper encroachment due
to greater competition for limited soil water storage (Miller et al.,
2000, 2005). An increase in bare ground to 40–50% generally marks
the transition to a juniper-dominated state (State 3) with higher rates
of runoff and erosion (see Tables 5 and 6; Fig. 4). This transition
ultimately results in a shift from biotically controlled water and soil
retention to abiotically controlled losses of water and soil resources
(Williams et al., 2014a). Transition and degraded hydrologic function
may be avoided where management actions sustain 50–60% ground
cover and limit western juniper encroachment (see Table 6). Persis-
tence of juniper dominance and an increase in bare ground beyond
60% advance transition to a juniper-eroded state (State 4) with abioti-
cally driven long-term loss of dynamic soil properties and critical soil
nutrients (see Table 6; Fig. 4). Estimated erosion on the annual scale
and for the 100-yr runoff event may approach or exceed 2 t • ha–1 in
State 4; estimated annual and 100-yr event erosion can range 0.1 to
near 1.0 t • ha–1for the Reference State and State 2 (see Table 5;
Fig. 4). Prescribed-fire may provide a restoration pathway from State
3 to State 2 (Pierson et al., 2013; Williams et al., 2014a), however, soil
loss can increase by a factor of five in the years immediately following
fire (Table 5, Fig. 4). Sites on steep slopes (N35%) may exhibit even
greater increases in runoff and erosion postfire (Williams et al.,
2014b). Runoff and erosion following burning of State 3 may return to
similar levels of State 2 if the treatment restores ground cover to
approximately 50–60% (Pierson et al., 2009). Burning of States 3 and
4 poses risk of transition to a cheatgrass-dominated community (State
5), where postfire recovery of native perennials is limited (Pierson et al.,
2011; Miller et al., 2013; Bates et al., 2014). Increased fire frequency in
State 5 further promotes long-term soil loss associated with frequently
recurring high postfire erosion rates (Pierson et al., 2011; Williams et al.,
2014b; see Tables 5 and 6). Restoration efforts in State 3 may require
seeding to re-establish ground cover and restore negative ecohydrologic
feedbacks that sustain ecosystem productivity (Sheley and Bates, 2008;
see Table6). The above catalogof community dynamics andecohydrologic
feedbacks is not exhaustive but demonstrates the utility of the proposed
framework for enhancing ESDs and guiding management.

Application to Other Ecological Sites

A critical component of the proposed framework is its broad applica-
bility to the diverse rangeland domain. The framework was organized
concurrent within the existing broadly applicable ESD concept (see
Table 1). The data requirements (see Table 2) to develop the “hydrologic
functions” table are mined from those required in ESD development
(USDA, 2013) and application of those data to the RHEM model. For
this study, we varied our application of the RHEM model to reflect a
tree-encroached landscape, running separate simulations for tree canopy
and intercanopy areas. This approach is merited where woody plant
encroachment coarsens a landscape into hydrologically unique compo-
nents that govern the overall landscape response. Similar or novel
approaches could be developed to apply aggregated RHEM simulations
to other sparsely vegetated plant communities with or without distur-
bance. The RHEM model is already formulated to predict hillslope scale
runoff and erosion for less-fragmented rangelands (e.g., grasslands and
well-vegetated shrublands) and has been applied across diverse range-
land sites (USDA, 2011; Weltz and Spaeth, 2012; Hernandez et al.,
2013; Al-Hamdan et al., 2015). The RHEM results in anymodeled frame-
work should be considered relative runoff and erosion estimates for the
modeled condition. RHEM results can be qualified in context with
reported runoff and erosion rates from literature. The integration of the
RHEM results and the hydrologic interpretations (i.e., “hydrologic
functions” table) into the STM and narrative elements requires some un-
derstanding of ecohydrologic feedbacks and thresholds for the ecological
site of interest. This component may be limited for some rangeland eco-
logical sites. We suggest that expert opinion and other resources used in
the development of the various ESD featuresmay provide insight in such
cases (Bestelmeyer et al., 2009; Moseley et al., 2010; USDA, 2013). At a
minimum, RHEM results could be presented in context with literature
on similar sites andwith rangeland health indicators as a relative assess-
ment of hydrologic function for various states and transitions.

For some sites, key variables omitted in our example study site may
merit inclusion in the “hydrologic functions” table and site narrative.
For example, wind erosion may also be a concern on gently sloping or
recently burned sites with extensive bare ground (Sankey et al., 2009;
Ravi et al., 2010; Zhang et al., 2011; Sankey et al., 2012; Wagenbrenner
et al., 2013). Soil water recharge and plant water demands may be
primary drivers of community dynamics and ecosystems function
(Peters et al., 2010; Hamerlynck et al., 2012; Schlaepfer et al., 2012;
Mollnau et al., 2014) and can be characterized within the hydrologic
interpretations. We did not attempt to model soil water for our
example, but numerous rangeland models are available from imple-
mentation into the proposed framework (Flerchinger et al., 1996;
Flerchinger et al., 2012; Finzel et al., 2015). Evapotranspiration
data may also be useful in interpreting ecosystem response to vegeta-
tion transitions and can be included where available (Moran et al.,
2009; Flerchinger et al., 2010; Newman et al., 2010). In short, we do
not suggest that the proposed framework is a binding or exhaustive
approach, but rather, that it provides a flexible foundational framework
for incorporating ecohydrologic data into ESDs.

Evaluaton and Utility of the Rhem Tool

Runoff and erosion rates predicted by the RHEM tool were consistent
with published literature on the South Slopes 12-16 PZ site andother sim-
ilar ESs (Pierson et al., 2007; Petersen et al., 2009; Pierson et al., 2009,
2013; Williams et al., 2014a). Williams et al. (2014a) conducted rainfall
simulations (102 mm • h–1, 45 min, 77 mm total rainfall, 13 m2 plots) in
burned and unburned areas of a late-succession western juniper-
encroached sagebrush site (sandy loam to loam surface soils) in south-
western Idaho, United States. They measured 43 mm of runoff and
2.7 t • ha–1 of soil loss from unburned intercanopy areas. This
would translate to approximately 30 mm of runoff and 1.9 t • ha–1

soil loss when weighted by a factor of 0.7 as applied to unburned
intercanopy RHEM simulations in this study. Runoff values for un-
burned conditions in the Williams et al. (2014a) study are most similar
to the 100-yr event (57 mm rainfall) simulated by RHEM for unburned
State 4 (see Table 5), yielding 22mmof runoff and 2.4 t • ha–1. Williams
et al. (2014a) reported 43 mm and 5.7 t • ha–1 of runoff and soil loss
from burned intercanopy areas and 50 mm and 10.8 t • ha–1 of runoff



Table 7
RHEM1 predicted runoff and erosion for varying soil texture and slope gradient under un-
burned2 and burned3 conditions of State 4, juniper-eroded4 (see Table 4), on the “South
Slopes 12-16 PZ” (R023XY302OR) Ecological Site (NRCS, 2014). Deviation from the base-
line model parameterization5 is noted in italics

Average
annual

2-Yr
event

10-Yr
event

50-Yr
event

100-Yr
event

Precipitation (mm) 314 24 35 48 57
Baseline model5

Loam (45% sand, 15% clay), 35%
slope, unburned2

Runoff (mm) 15 6 12 17 22
Erosion (t·ha–1) 1.7 0.6 1.3 1.8 2.4

Effect of soil texture
Silt loam (35% sand, 15% clay),
35% slope, unburned2

Runoff (mm) 16 6 12 18 22
Erosion (t·ha–1) 9.2 3.4 7.3 10.1 13.5

Sandy loam (55% sand, 15%
clay), 35% slope, unburned2

Runoff (mm) 14 6 12 17 22
Erosion (t·ha–1) 0.5 0.2 0.5 0.6 0.8

Effect of slope
Loam (45% sand, 15% clay), 15%
slope, unburned2

Runoff (mm) 15 6 12 17 22
Erosion (t·ha–1) 0.8 0.3 0.7 0.9 1.1

Loam (45% sand, 15% clay), 80%
slope, unburned2

Runoff (mm) 15 6 12 17 22
Erosion (t·ha–1) 3.0 1.1 2.3 3.3 4.4

Aggregated effects of soil
texture, slope, fire
Silt loam (35% sand, 15% clay),
15% slope, burned3

Runoff (mm) 24 9 18 28 32
Erosion (t·ha–1) 9.0 3.2 7.6 12.0 13.8

Sandy loam (55% sand, 15%
clay), 80% slope, burned3

Runoff (mm) 24 9 17 27 31
Erosion (t·ha–1) 32.3 11.8 24.4 33.4 43.5

1 Rangeland Hydrology and ErosionModel (Nearing et al., 2011; Al-Hamdan et al., 2015).
2 Unburned conditions refer to canopy andground cover as shown in Table 4 for unburned

State 4, juniper eroded. All values for runoff and erosion under unburned conditions reflect a
30% reduction in RHEM predicted runoff and erosion given the simulations are for the
intercanopy area (70% of total) solely. Runoff and erosion from areas underneath tree cano-
pies (30% of area) were assumed negligible (Pierson et al., 2010, 2013; Williams et al.,
2014a; Pierson et al., 2014).

3 Burned conditions refer to canopy and ground cover as shown in Table 4 for States
3–4, immediately following wildfire.

4 Juniperus occidentalis Hook.
5 Baseline parameterized is as follows: loamsurface soil texture, 50mslope length, uniform

slope shape, 35% slope gradient, canopy and ground cover for unburned State 4 as shown in
Table 4, and climate data from the Sheaville, OR, U.S. climate station (ID: 357736).
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and soil loss from burned tree canopy areas for the simulated storm.
Area weighting the tree canopy values by 0.3 and the intercanopy
values by 0.7 results in 45 mm of runoff and 7.3 t • ha–1 of soil loss in
aggregate for the burned site. For prescribed-fire conditions, the
100-yr runoff and erosion predicted by RHEM for State 3 were,
respectively, 1.4-fold less than and 1.6-fold higher than the plot-scale
values measured by Williams et al. (2014a). We attribute the dif-
ferences in runoff and soil loss between our RHEM simulations and the
plot-scale Williams et al. (2014a) study to scale differences for the
measured versus simulated values. Cumulative runoff commonly declines
or remains similar across spatial scales for disturbed conditions, whereas
erosion is unchanged or increases with increasing scale along a hillslope
following disturbance due to connectivity of runoff and erosion processes
(Pierson et al., 2009, 2011, 2013; Williams et al., 2014a, 2015). Pierson
et al. (2007) reported 13 mm of runoff and 1.2 t • ha–1 of soil loss for a
53-mm simulated rainfall event in intercanopy areas of an unburned
late-succession woodland on the South Slopes 12-16 PZ ES. Area
weighting the intercanopy area by 0.7 yields 9 mm of runoff and
0.9 t • ha–1, similar to the RHEM predicted values for the 50-yr runoff
event for State 3 and approximately half that predicted for State 4
(see Table 5). Plots in the Pierson et al. (2007) study were 32.5 m2.
The similarities in RHEM results as applied in this study with values
reported in literature demonstrate RHEM’s utility for predicting relative
measures of runoff and erosion within the ESD concept. We caution
against interpretation of RHEM results as absolute measures of runoff
and erosion given the potential variability in soil loss across widely
variable conditions within an individual ecological state or community
phase and with increasing spatial scale. It is not practical to parame-
terize themodel for all possible vegetation conditions of a given state or
community phase. Rather, we suggest applying the model for average
vegetation conditions and utilizing the results to interpret relative
hydrologic and erosion function.

Results from RHEM simulations using variable static site characteris-
tics (soil texture, slope gradient, etc.) indicate the model may be useful
for identifying and separating ecological sites based in part on hydrologic
function. We altered our baseline RHEM model for State 4 of the South
Slopes 12-16 PZ ES to reflect the possible variability in soil texture and
the minimum and maximum slope gradients for the site as defined in
the NRCS-published ESD (see Table 3). Runoff was primarily unaffected
by soil texture variability, but erosion was approximately sixfold higher
for a silt loam and threefold lower for a sandy loam soil texture relative
to the loam texture baseline model (see Table 7). Varying slope gradient
within the baseline model likewise did not alter runoff predictions.
However, erosion was twofold less for baseline conditions with 15%
slope and nearly twofold more for baseline conditions with 80% slope
(see Table 7). The influence of slope gradient on soil erosion is most
evident for burned simulations of State 4. Applying a fine-textured silt
loam soil and gentle slope gradient (15%) to State 4 for the burned condi-
tion (cover shown in Table 4) resulted in similar RHEM-predicted runoff
and erosion (see Table 7) as for burned State 4 in the baseline model
(see Table 5). In contrast, applying a coarse-textured sandy loam soil
and steep slope gradient (80%) generated twofold to threefold more
erosion (see Table 7) than the baseline model of burned State 4 with a
loam soil and 35% slope gradient (see Table 5). Increasing the slope
gradient did not alter runoff prediction for the burned condition. We
anticipate the model would generate even more soil loss for a silt loam
soil with an 80% slope but did not simulate those conditions. We assume
soils at 80% slope gradient for the South Slopes 12-16 PZ ES are more
likely to be coarse textured. The results from the variable soil texture
and slope gradient RHEM simulations imply a potentially widely variable
hydrologic function for sites along soil transitions of the South Slopes
12-16 PZ ES and for the slope gradients in the NRCS-published ESD
(see Table 3). Furthermore, the results indicate sites within the steeper
range of the ESD for the study site may merit re-evaluation relative to
the current ESD classification. Our results for the study ESD further sug-
gest that RHEM provides a new methodology to evaluate (in context
with other supportive data) potential separation of currently approved
ESDs and to assist development of ESDs in general through
integration of hydrologic function into the ESD concept.

As ESDs are developed nationally with their associated geospatial
location and shape, the application of RHEM to multiple hillslopes and
watersheds can be rapidly facilitated with the KINEROS2 rainfall-
runoff-erosion model within the Automated Geospatial Watershed
Assessment tool (AGWA; Goodrich et al., 2012). RHEM has been incor-
porated into KINEROS2 and serves as its engine for hillslope runoff and
erosion simulation. AGWA is a Geographic Information System tool that
uses nationally available spatial datasets (Digital ElevationModels, soils,
and land cover) to develop input parameter files for both KINEROS2 and
SWAT watershed models. Simulation results for a variety of RHEM/
KINEROS2 model outputs can be displayed across the entire watershed
by importing them back into the GIS environment for display. AGWA
also facilitates the ready identification of at-risk hillslopes or down-
stream channels under alternate management scenarios. It accom-
plishes this by conducting a simulation with a given ecological state
configuration, saving the results (temporal and spatial), and then
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conducting another simulationwith alternate ecological states using the
same precipitation inputs. The results of the original and alternate
simulation can then be differenced (magnitude or percent change)
and displayed spatially across all watershed model elements. This
readily enables users to identify hillslopes at risk of high runoff and
erosion and where management efforts might be focused to mitigate
those risks.

Management Implications

We suggest that inclusion of key ecohydrologic data and relation-
ships enhances the utility of ESDs for the ecological assessment and
management of rangeland ecosystems and the targeting of conserva-
tion practices. Water is the primary limiting resource in rangeland
plant communities, and ecohydrologic feedbacks strongly influence
the resilience of ecological states and transitions between states for
many rangeland ES. Furthermore, ecohydrologic relationships are
affected by various conservation practices and land uses. The recom-
mended framework provides a methodology to capture these key
relationships within the current ESD structure and to incorporate key
ecohydrologic information in models of ecological state dynamics. The
RHEM tool provides a new technology for predicting relative runoff
and erosion responses for ecological states, state transitions, and
short- and long-term responses to management actions and distur-
bances. The integration of this new technology and our suggested
framework on ecohydrologic relations expands the ecological founda-
tion of the overall ESD concept for rangeland management and is well
matched with recent shifts toward resilience-based STMs and manage-
ment approaches. Finally, we believe the proposed enhancement of
ESDs will improve communication between private land owners and
resource managers and researchers across multiple disciplines in the
field of rangeland management.
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